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Elastic constants of hard thin platelets by Monte Carlo simulation and virial expansion
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In this paper we present an investigation into the calculation of the Frank elastic constants of hard platelets
via molecular simulation and virial expansion beyond second order. Monte Carlo simulations were carried out
and director fluctuations measured as a function of wave vector k, giving the elastic constants through a fit in
the low-k limit. Additionally, the virial expansion coefficients of the elastic constants up to sixth order were
calculated, and the validity of the theory determined by comparison with the simulation results. The simulation
results are also compared with experimental measurements on colloidal suspensions of platelike particles.
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I. INTRODUCTION

The liquid crystalline nematic phase, characterized by
long-range orientational order and translational disorder of
the molecules, is typically found in systems of rodlike and
platelike molecules [1]. Indeed, since the theoretical work of
Onsager [2] and the simulations of Frenkel and co-workers
[3-6], it has been known that entropic effects alone, which
result from the excluded volumes of sufficiently aspherical
particles, are sufficient to drive the isotropic-nematic transi-
tion. Therefore, hard-particle models capture some of the es-
sential physics, and have been used extensively in computer
simulations. The results of such simulations may be com-
pared, quantitatively, with experimental studies of colloidal
suspensions of rodlike and platelike solid particles [7-9].

Within the nematic phase, molecular orientations are dis-
tributed about a preferred direction: The so-called director n.
Spatial deformations of the director are well described, in the
limit of large wavelength, by the Oseen-Frank [10,11] orien-
tational elastic theory, which contains three phenomenologi-
cal parameters, the Frank elastic constants. Experimentally,
knowledge of these constants, together with a few other pa-
rameters (such as surface anchoring strengths), is sufficient
to describe many of the interesting large-scale and mesoscale
structures formed in liquid crystals.

For rodlike particles, computer simulations were used
long ago to relate Frank elastic constants to molecular shape
[12-15]. Onsager’s theory, which amounts to a classical
density-functional description of the distortion free energy at
the second virial coefficient level (neglecting higher-than-
pairwise interactions) gives an accurate description of both
the thermodynamics and orientational elastic properties of
sufficiently elongated rods [16], and can be empirically
modified to give reasonable accuracy at moderate elonga-
tions [14,17,18]. The reason for this is well understood: The
reduced higher virial coefficients B,/BY"™" are known to
vanish as the molecular elongation tends to infinity [19,20].
Calculations of elastic constants from molecular dynamics
simulation have also been performed for Gay-Berne disks
[21], and recent experiments examining the effects of exter-
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nal fields and interfaces on the nematic phase of platelike
colloids [22-24] also shed light on the values of the Frank
constants, and invite comparison with computer simulations
and theory. However, for oblate molecules (even infinitesi-
mally thin plates), it is known that the higher virial coeffi-
cients are significant, and Onsager theory gives a poor de-
scription of the phase behavior [3,4]. Approximate
resummations of the virial series, such as the Parsons-Lee
approach [25,26], will fail in the infinitely thin plate limit, as
the volume of the particle is zero.

This paper presents Monte Carlo calculations of the Frank
elastic constants for systems composed of thin hard circular
disks over their full nematic range, and compares with theo-
retical estimates which incorporate virial terms up to sixth
order. The paper is arranged as follows. Section II reviews
the orientational elastic theory of Frank and Oseen, and de-
scribes the fitting procedures used to extract the elastic con-
stants from simulation. Section III summarizes the virial
theory for calculating the elastic constants. Section IV gives
the simulation details. The results are presented in Sec. V
and conclusions in Sec. VI.

II. ELASTIC THEORY

For bulk systems in the nematic phase, slowly varying
spatial inhomogeneities in the director field n give rise to the
following free energy penalty [11]:

aF =2 [ k¥ )P+ K ) [V AP

+ Ksln(r) ALV An@)]P}, (1)

where K|, K,, and K5 are the splay, twist, and bend Frank
elastic constants, respectively. The rotational invariance of
bulk geometry means that the average director n can vary
with time throughout simulations, leading to complications
in describing system quantities. For this treatment we require
a consistent director, hence we consider also the effect of a
small orienting field giving the following contribution to the
free energy:
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Fex=® f dr{1 ~[n(r) -z}, (2)

where z is the unit vector in the z direction, and @ is a
strength parameter. This can be chosen to be reasonably
small while preventing n from wandering far from z.

The thermal fluctuations of the director are best described
by a spectrum of modes. Decomposing the director with the
Fourier transform pair

n(r)= 12 fi(k)exp(— ik - r), (3a)
V%
nk) = f n(r)exp(ik - r)dr (3b)

allows one to work in reciprocal space with the Fourier com-
ponents 72(k). A consistent manner of describing such spectra
involves a change of coordinate system from the fixed xyz
frame to a k-dependent 123 frame, where 3 is fixed along the
desired director (here the z axis), 1 is defined perpendicular
to 3 such that the wave vector k is in the 13 plane and 2 is
perpendicular to both r and k. Hence, the wave-vector coor-
dinates reduce to k=(k;,0,k3).

For small variations of n away from the 3-direction,
n3(r)=1, and the distortion free energy, perturbed by the
external field, can be written in terms of the Fourier trans-
forms 77,(k), 1,(k), of the remaining components,

F= 23 KRl 0P + Kl
2w
+ (K3k§+2‘b)[|’71(k)|2+ |77, (k) [*]. (4)

According to equipartition of energy, each mode is assigned
an average energy of kz7/2 and hence

VkgT

~ k 2 — —’
Ol K JC+ K5k + 2

n=1,2. (5)
This is valid in the limit of low k.

III. VIRIAL THEORY

The Helmholtz energy, F, of a system with number den-
sity p=N/V, and temperature 7 is given by

F=F, +NkBT<ln(A3p) -1 +f o(u)In[47e(u)]du

O Bnp"_l). (6)

n=2n_1

F, is the ideal gas contribution, related to rotational degrees
of freedom, B, is the nth virial coefficient, A is the thermal
de Broglie wavelength, and ¢(u) is the one-particle distribu-
tion function of particle orientation u. B, is given by
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Bn=

where

Vn=2Hfij- (®)

S, i<j

The sum over S, denotes the sum over all star integrals with
n points, and f;; is the Mayer f-bond between particles i and
j. As we are dealing with hard particles, this is equal to —1
when the particles are overlapping, and O when they are not.
¢(u) is determined as the function that minimizes F subject
to the normalization condition

f ou)du=1. ©))

At low density, the only solution is @(u)=1/4 (for axially
symmetric particles), corresponding to the isotropic phase.
At higher densities a nematic solution also appears. The
isotropic-nematic coexistence densities are determined by
equating the chemical potentials and pressures of the two
phases. The calculation of the nematic virial coefficients is
done by making use of Onsager’s trial function for ¢(u) [2],

o

olu)=——

- cosh(a cos 6), (10)
7 sinh «

where « is a parameter describing the nematic ordering of
the system about the director n, and ranges from 0 for iso-
tropic ordering (no order), to % for perfect nematic ordering.
0 is the angle that each particle makes with this director. In
this case, the nematic order parameter, S={P,(cos 6)), where
P, is the second Legendre polynomial, is given by

3 3
S=1l+—-——.
o atanh a

(11)

Using this trial function gives F as a function of «, akin to a
Landau Helmholtz energy expression. « can then be deter-
mined for a given density by requiring dF/da=0, to give the
a value for which F is minimized. Further discussion of the
quality of this approximation will be given in a future pre-
sentation.

The virial coefficients are calculated using a modified ver-
sion of the Ree-Hoover method [27,28]. The main difference
is that the virial coefficients are calculated for a variety of «
values. For a given value of «, the particle orientations are
chosen at random from the trial function distribution. Re-
peating this for a range of « values gives the virial as a
function of a. A cubic spline interpolation is then used to
join the discrete points calculated. With this done, it is then
possible to minimize F with respect to «, and calculate the
pressure and chemical potential of the system as a function
of density. Detailed results from this method will be given in
a later presentation. Suffice it to say that the equation of state
of the nematic phase converges rapidly with increasing order
of expansion, with very small oscillations about the simula-
tion result.
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The Frank elastic constants of a nematic liquid crystal are
calculated in a related manner to the calculation of the equa-
tion of state. K|, K,, and K3 are given by [29,30]

1
K,U,=EpkBTf f ric(l’z)@’(ul)(P,(u2)u1,xu2,x

Xdu,duydrdr,. (12)

¢(1,2) is the two-particle direct correlation function, while
Fus =1 ,2,3 are the distances between two particles in the x,
v, and z directions, respectively. ¢’(u) is the derivative of
¢(u) with respect to u-n (i.e., cos §). The other symbols
have their usual meanings. To solve this integral, an expres-
sion for ¢(1,2) is required. This can be expressed in terms of
the Mayer function fil,-,

c(1,2)=f12+pjf12f23f13<p(u3)dr3du3+ e (13)

The expansion takes into account the Mayer function be-
tween each pair of particles at each virial level. Using this
expansion, the integral can be split into components at each
virial level. The general expression for each coefficient at
virial level B,, is

1-n
K=y f mfVn’i@’(ul)cp’(uz)¢(u3)"'
du,dr, - dr,, (14)

X @(un)ul,xulxdul e

where V, is given by Eq. (9). The coefficients are then
summed to give the elastic constants

K, = kTS K0 (15)

Again, a modified Ree-Hoover method [27,28] is used to
calculate the coefficients for any given value of @. To com-
pare with simulation, we can either take the order parameter
S from simulation and calculate the corresponding «, or we
can use the « calculated by the theoretical equation of state.

IV. SIMULATION DETAILS

The simulated system consists of a fluid of infinitely thin
hard disks (interaction potential between a pair of molecules
V;j=o if the molecules overlap, and zero otherwise). The
overlap criterion is described elsewhere [4,31]. For this sys-
tem, due to the absence of any finite interaction potentials,
the temperature is irrelevant, except as a scaling factor for
energies and free energies. Reduced units of energy in these
simulations are obtained by taking kz7T=1 and reduced units
of distance by setting the platelet diameter D=1.

The orienting field of Eq. (2) is applied in the simulation
as the following potential energy term:

N
Use= U2 [1 = (u;-2)%], (16)
i=1

where u; denotes the orientation of molecule i and U is a
field strength parameter. It is easy to show that the strength
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TABLE 1. Density pD3 of each simulation, with simulation av-
erages of order parameter S, and elastic constants K,,D/kpT. Num-
bers in parentheses represent estimated errors in the last quoted
digit.

pD? S K\D/kgT K,D/kgT K3D/kgT
4.50 0.6694(8) 2.85(4) 4.75(7) 0.86(1)
5.00 0.7620(4) 4.3(3) 7.6(1) 0.98(4)
6.00 0.8490(2) 9.80(5) 15.2(1) 1.31(3)
6.25 0.8618(3) 11.4(1) 17.4(1) 1.43(4)
6.50 0.8738(3) 13.4(1) 20.6(3) 1.63(4)
6.75 0.8827(3) 14.9(1) 22.8(1) 1.56(9)
7.00 0.8922(2) 17.4(3) 26.2(4) 1.59(1)
7.25 0.9003(3) 19.3(2) 28.9(2) 1.75(6)
7.50 0.9065(2) 21.5(1) 32.8(3) 1.76(4)
7.75 0.9130(2) 24.2(1) 36.1(5) 1.80(3)
8.00 0.9180(3) 26.7(3) 40.5(2) 1.89(5)

parameter of Eq. (2) is related to U by ®=pSU. A value
U/kgT=0.1 was found to ensure the z component of n re-
mained within 0.1% of 1.

Monte Carlo simulations were performed for systems of
8000 particles with cubic periodic boundary conditions in the
canonical ensemble. Equilibration runs consisted of at least
10° sweeps, and simulation averages were taken during pro-
duction runs of 1 or 2 X 10° sweeps, depending on density (1
sweep equals 1 attempted MC move, combined translation
and rotation, per particle). Displacement parameters were
chosen to give a move acceptance rate in the range 30%-—
40%. All of the state points chosen, with a density range
pD?=4.5-8, are in the nematic region for platelets; the
isotropic-nematic transition occurs at pD>~3.78 [4,32]. Av-
erage values of order parameter for each density are reported
in Table I.

The use of Eq. (5) to calculate elastic constants from mo-
lecular simulations is well established [12—15], and so only a
brief description will be given here. It is convenient to work
with the order tensor, Q s for the representation of orienta-
tional correlations in the nematic phase. For molecular ori-
entations represented by unit vectors u;=(u;y, sy, u;,),

N

000 =23 2wy o o -r). (17

i=1

where w,v=x.,y,z, d,, is the Kronecker & and &(---) the
Dirac 6 function. The order parameter S, an indication of the
degree of mutual alignment, is found from the highest eigen-
value of the volume-averaged order tensor, with the director
n given by the corresponding eigenvector. It is easy to show
that S=(P,(u;-n)) as defined earlier. The Fourier compo-

nents of the order tensor,
N

0,,(k) = rs

3 1
Mlﬂw3Qmwn (18)

can be related, at low k, to those of the director via the
identity
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(0,017 = 35%(,()[*) (19)
and thus we obtain for the order tensor spectrum [33]
92
~ _S VkBT
k) = + : 20
<|Q,u.3( )| > Kﬂki+K3k§+2pSU ( )

The elastic constants can be obtained from the function
382VkyT .,
= — KMkM+K3k3+2pSU ask— 0,
(10,,3(k)*)
(21)

fitted to the simulation data. In the case of high k the function
will converge to a limiting value

(P3)pksT
%<P2> - %<P4> + 1_15
involving both average second- and fourth-order polynomi-
als of u;-n.

In the simulation, the wave vectors of orientational distor-
tions are determined by the size of the system via

k =ko(ky Ky K,) (23)

W,s(k) — ask—oo,  (22)

where kog=2m/L, L is the length of the simulation box and
the «, are integers chosen in the range 0<«,,<20 and
0= «,=<40, the upper limit being large enough to observe
convergence of W3 to the high-k limit. The calculation of
director fluctuation spectra is quite expensive, and the low-k
fluctuations are quite slow: Therefore, contributions to W,
were computed every 100 MC sweeps for low values of k
(k,y<10 and x,<20), and every 1000 sweeps for the
higher-k modes which are less critical in estimating the elas-
tic constants. Other quantities, such as pressure and order
tensor, were calculated every 10 sweeps. In order to obtain
the director fluctuations in a convenient form, the molecular
orientations must first be transformed from the fixed xyz
frame into the k-dependent 123 coordinates system. The

functions |Q,3(k)|*> can then be calculated for the desired
wave-vector spectrum from Eq. (18), saved at regular inter-
vals and statistical uncertainties estimated from the variation
over several blocks of MC sweeps.

After obtaining the spectra, the functions W,;(k) were
found from Eq. (21) and were fitted to a ratio of multivariate
polynomials in k% and k% The polynomials were chosen so as
to ensure that the leading coefficients in the numerator pro-
vided estimates for the elastic constants and the trial function
converged to the limit of Eq. (22) for high k.

In the least-squares fitting of the trial function to fluctua-
tion data, the estimates for the elastic constants are sensitive
to several details of the fitting procedure. The range of the k
spectrum used in the fit largely determines the extent to
which the fitting function describes the behavior at high k,
whereas an accurate description of the low-k modes will give
the most accurate values for the elastic constants. Hence,
changing the limiting values of k; and k3 will change the
relative weighting of the low-k data in the fit. Another feature
of the fitting is the number of parameters in the fitting func-
tion, determining the freedom of the function to match the
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FIG. 1. (Color online) The functions (a) W3, and (b) W,3, as
functions of squared wave-vector components (k%,k%) at the pD?
=8 state point. The simulation data with statistical error is given as
a set of vertical lines, with the dotted surface representing the fitting
function. The legends show the contour color coding, with all units
such that D=1 and kzT=1.

simulation data. Increasing the number of parameters can
allow the function to reduce the accuracy for the low-k data
in favor of following more closely for higher k. Several
choices for the number of parameters and range of k spec-
trum were used, and the leading coefficients averaged over
these choices to provide estimates for the elastic constants
with associated fitting error. These limits imposed by the
fitting turned out to be larger than the statistical errors for the
runs conducted here.

V. RESULTS

Figure 1 shows the functions W,5(k), defined by Eq. (21).
As desired, the fitting functions describe the linear, low-k
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FIG. 2. (Color online) Slices through the surfaces of (a) W3,
and (b) Wi, for fixed k3 as a function of k7, showing respectively
splay and twist fluctuations, from simulations at the pD3=8 state
point. The error bars give the data points with statistical error and
the lines correspond to the fitting function for the entire surface in
each case. k3=0, full line (black); k3=15k, dashed line (red); k3
=30k, dot-dashed line (green).

regime well, and even pass through most of the data points
for higher k. W3 follows the structure over a maximum as k,
and k5 increase together and )V, describes the smoothing
out of a sharply peaked profile in k; as k3 increases. It is
apparent that the low bend elastic constant, causing only
gradually increasing fluctuations, couples with a lack of
structure developing along the director (compared to normal
fluctuations) to allow more points to be included in the low-k
treatment along n.

This behavior is also illustrated in Figs. 2 and 3, showing
various slices of the data sets for W,;(k). Although the es-
timates for the elastic constants are sensitive to the range of
wave-vector spectrum and number of fitting parameters

400 T T T T 400 T T T r
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2 2
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FIG. 3. (Color online) Slices through the surfaces of (a) W3
and (b) Wh; for fixed k; as a function of k%, showing bend fluctua-
tions, from simulations at the pD*>=8 state point. The error bars
give the data points with statistical error and the lines correspond to
the fitting function for the entire surface in each case. k; =0, full line
(black); k;=5k;, dashed line (red); k;=10ky, dotted-dashed line
(green).
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FIG. 4. (Color online). The splay, twist, and bend elastic con-
stants as a function of order parameter. The lines represent data
from a sixth-order virial expansion, and the points are simulation
results. Splay, K, circles (red); twist, K, squares (green); bend, K3,
diamonds (blue). In all cases the errors are smaller than the plotting
symbols.

included, there is no visible effect on the low-k regions of
each graph. Hence, we have plotted the fitting function as
fitted across the entire spectrum with the largest number of
parameters used, in order to guide the eye over the observed
data.

The elastic constants obtained from this fitting procedure
are summarized in Table I. Figure 4 shows the elastic con-
stants as a function of order parameter as obtained from the
simulation and theory. The qualitative features of the results
are as expected for disklike particles [34]: Director twist in-
duces the largest free energy penalty, bend is the least expen-
sive, and splay lies between the others. A striking result is
that the bend elastic constant K5 is very small compared with
the others (by more than an order of magnitude for the more
ordered state points); this highlights the anisotropy of the
infinitely thin platelets.

It is of interest to compare these results with experimental
determinations of the elastic constants for colloidal suspen-
sions of gibbsite particles [23,24]: K;=0.6-2.6X 10713 N
and K3;=6-8 X 10™'* N for an order parameter in the range
S=~0.80-0.85. If one inserts estimates for D=220 nm and
kgT~4X 102!, the corresponding simulation results for
§~0.85 are K;~1.8X 1073 N and K;~2.4 X 1074 N. This
is quite reasonable agreement, bearing in mind that the ex-
perimental platelets are not of vanishing thickness.

The virial coefficients for the Frank elastic constants have
been calculated up to sixth order. At higher orders, statistical
errors were too large to give acceptable reults. This is due to
the presence of ¢'(u) in the integrand given by Eq. (14),
which varies sharply for the more ordered distributions. We
use the order parameter determined by simulation at a given
density to fix the value of a [Eq. (11)], calculate the elastic
constant virial series at this particular density, and then study
its convergence properties.

Figure 4 compares results from the virial expansion
theory with simulation data, showing reasonable agreement.
Figure 5 shows the convergence of the virial series for the
splay constant K. As can be seen, truncating at the second-
order virial level drastically underestimates the elastic con-
stant. However, at third-order virial level, the agreement with
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FIG. 5. (Color online) Splay elastic constant K, as a function of
order parameter S. The black circles give results from Monte Carlo
simulation, the lines give data from various orders of virial expan-
sion. Sixth order, continuous (black) line; fifth order, long dashed
(red) line; fourth order, short dashed (green) line; third order,
dotted-dashed (blue) line; second order, double-dotted-dashed
(cyan) line. Inset: Percentage error in the third- through sixth-order
theories, using the same notation.

simulation is much better, although it is still an underesti-
mate. Apart from the lowest density, which is not far from
the isotropic-nematic transition region, these higher-order
virial theories all agree with the simulation results to within
*10%. However, as the order of the virial expansion goes
up, the results begin to oscillate around the correct value.
The third-order results are underestimates; the fourth-order
results are slight overestimates, fifth order is a greater over-
estimate, while the sixth-order results are underestimates,
barely distinguishable from the results obtained at third or-
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der. This is due to the appearance of negative coefficients in
the theory at this level. Similar convergence properties are
seen for K, and K3, with second level virial theory signifi-
cantly underestimating the elastic constant, and subsequent
levels getting closer to the true value, until the change in sign
of the virial coefficients causes fluctuation around the simu-
lation result.

VI. CONCLUSIONS

We have determined the elastic constants for the nematic
liquid crystal phase of infinitesimally thin hard circular plate-
lets. Comparison with the same quantities predicted by virial
expansions shows that the lowest-level theory (second order)
significantly underestimates the correct values, but that
higher-order expansions are typically correct to within 10%
at moderate to high density. However, the theory does not
converge monotonically towards the correct result, but oscil-
lates as the order increases, due to the appearance of high-
order negative virial coefficients. Both theory and simulation
show that the bend elastic constant is at least an order of
magnitude smaller than the twist and splay constants. Finally,
good agreement is obtained with experimental measurements
of splay and bend elastic constants for a colloidal suspension
of platelike particles.
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